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testing inflation

• to probe inflation: measure r
or fNL

• CMB constraints on fNL will
not be improved much after
Planck

• want to get to fNL < 1 to
test slow-roll inflation

BICEP2/Keck, Planck Collaborations (2015)

Planck Collaboration (2015)



first, a brief digression into B-modes



what can B modes tell us?

• B modes sensitive to tensor fluctuations during inflation

• "smoking gun" for inflation: can we make this more precise?

• inflation is the only single-field model that can produce
scale-invariant scalar modes

• similar no-go theorem for tensors?

Baumann, Senatore, Zaldariagga (2011)



parameterizing the approach to inflation

• parameterize background
solutions as a power law:
a = (t/t0)α, so H = α/t.

• "slow roll parameter"
−Ḣ/H2 = 1/α

• α→∞ is de Sitter

• to solve horizon problem, need
k/aH to decrease with time



scaling solutions to the horizon problem

• “not-so-big bang": α > 1

• contraction: 0 < α < 1

• “starting the universe": α < 0
Creminelli, Luty, Nicolis, Senatore



tensors in EFT of inflation
• epoch that pushes modes outside horizon ends to give normal
expansion ⇒ time diffs spontaneously broken

• EFT of inflation: most generic action consistent with symmetry

• keeping only terms fixed by background gives 〈γ2〉 ∼ H(t)2/M2
Pl

• with speed of sound, 〈γ2〉 ∼ H2/cγM
2
Pl ⇒ time-dependent speed

of sound can restore scale invariance
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∫
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scale-invariant tensors

• with speed of sound cγ ∼ tm, canonically normalized action for
helicity modes σ with dy = (cγ/a)dt is

Sσ = M2
Pl

∫
d3xdy y2n

(
γ′2σ − (∂iγσ)2

)
,

where n = α−m/2
1− α−m

• solutions are Hankel functions, scale-invariant if n = −1 ⇒
m = −2

• fixes time dependence of cγ



rapidly varying speed of sound

• result independent of α: all scalings of a = (t/t0)α allowed?

• because of nonlinear realization of symmetry, couplings that
appear in quadratic action also in cubic action with fixed
coefficients

• cγ is very rapidly changing: if eN modes go outside horizon, cγ
varies by:

cγ,f
cγ,in

∼
(
tf
tin

)−2
∼
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)2/(α−1)
∼ e

2N
α−1

• but cγ < 1 for subliminality, so cγ � 1 at some point



constraints from weak coupling

• cubic action is large when cγ → 0

Lγγζ
Lζζ
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ijc−2
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5/2
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• constrained by weak coupling
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constraints on tensor modes

• get bound in terms of r and α

N

|1− α| � 2− 1
10 log r

α

• satisfied when α→∞

• to have a large α� 1, need non-perturbatively small r

• example: for r > 10−6 and N = 10, need α & 4 (εsl . 0.25)

• these are inflation-like backgrounds



extensions

• NEC-volating backgrounds

• particle production mechanisms

AP, Senatore (to appear)



on to LSS



constraining cosmological parameters with LSS

• projection for EUCLID: ∆fNL = 3.0
with kmax = 0.15
Giannantonio et. al. (2011)

• these estimates use only linear theory

• if we can extend UV reach, number
of modes goes like k3

max

• for kmax ∼ 0.3, this means
∆fNL < 1!



advantages of EFT

• approximation of high energy
(UV) theory at low energies
(IR) + perturbative
corrections

• UV theory is known: integrate
out to get simpler IR theory

• UV theory unknown:
parameterize ignorance of UV
effects in EFT parameters

⇓



an EFT of LSS

• UV = Boltzmann equation for dark matter particles + Newtonian
potential

• IR = effective gravitational fluid

• UV theory is known, so parameters can be calculated and
extracted from small-scale simulations

• or, write down generic stress tensor and match to observations



UV Construction for DM

• phase space density f(~x, ~p)d3xd3p:
probability that there is a particle in
volume d3xd3p

• for particles, given by

fn(~x, ~p) = ∑
n
δ3(~x−~xn)δ3(~p−ma~vn)

• each particle obeys collisionless
Bolzmann equation:

∂fn

∂t + ~p
ma2 · ∂fn

∂~x −m
∑
ñ 6=n

∂φñ

∂~x ·
fn

∂~p = 0



integrate out UV modes
• apply window function that cuts off k > Λ and expand f(~x, ~p) in
moments of ~p ⇒ fluid equations for δ and vi

• equations for higher moments suppressed by mean free path

• DM moves slowly compared to H ⇒ effective mean free path
v/H ∼ 1/kNL, so fluid description valid

smoothed overdensity smoothed fluid velocity

δ̇ + 1
a
∂i((1 + δ) vi ) = 0

v̇i +Hvi + 1
a
vj∂jv

i + 1
a
∂iφ = − 1

aρ̄
∂j[τ ij]Λ

∂i∂
iφ ∼ Ωmδ effective stress tensor



induced stress tensor

• smoothed effective stress tensor [τ ij]Λ is a function of long modes

• expansion in perturbations and k/kNL (constrained by symmetry)

bulk viscosity shear viscosity

τ ij = p̄δij + ρ̄( c1δ + c2
aH ∂kv

k )δij + ρ̄ c3
aH ∂(ivj) + ∆τ ij + . . .

speed of sound stochastic stress

• parameters encode expectation values of short modes in the
presence of long modes



perturbation theory

• linear equations relate δ to ∂ivi, so viscosity and sound speed
terms are degenerate at one loop

• fluid equations at one loop

δ̇ + 1
a
∂i((1 + δ)vi) = 0

∂iv̇
i +H∂iv

i + 1
a
∂i(vj∂jvi) + 1

a
∂2φ = −1

a
c2
s∂

2δ + 1
aρ̄
∂i∂j∆τ ij



perturbation theory

• expand in perturbations: δ = δ(1) + δ(2) + δ(3) + δ(ct)

• higher order terms sourced with Green’s function

• diagrammatic expansion

δ(1) = t t0

δ(2) = t t1

t0

t0
G

δ(3) =



loops + counterterms
• 〈δδ〉 = 〈δ(1)δ(1)〉+ 〈δ(2)δ(2)〉+ 〈δ(1)δ(3)〉+ 2〈δ(1)δ(ct)〉

• from equations of motion: counterterm proportional to linear
field, δ(ct) ∼

(
k

kNL

)2
δ(1)

〈δ(1)δ(1)〉
〈δ(2)δ(2)〉 〈δ(3)δ(1)〉 〈δ(1)δ(ct)〉

• Smoothed fields δ and vi depend on smoothing scale Λ

• Λ-dependence in loops canceled by Λ-dependence of
counter-term cs



dark matter results at two loops

Carrasco, Foreman, Green, Senatore (2013)



status of EFT of LSS
• redshift-space distortion

Senatore, Zaldarriaga (2014)

• bias
Senatore (2014), Angulo, Fasiello, Senatore, Vlah (2015)

• higher redshifts
Foreman, Senatore (2014)

• higher correlation functions
Angulo, Foreman, Schmittful, Senatore (2014)

• baryons
Lewandowski, AP, Senatore (2014)



the problem with baryons: astrophysical processes

• various baryon processes
modify the matter power
spectrum by > 1% on
relevant scales

• baryon effects include: star
formation, SN feedback, AGN
feedback

van Daalen, Schaye, Booth, and Dalla Vecchia (2011)



a fluid description for baryons?

• complicated to simulate baryon
physics, analytical treatment
possible?

• baryons explode and stream out:
effective fluid?

• very non-relativistic, even when hot
and mass density lost at smoothing
scale negligible

• in a cluster baryons and dark matter
occupy the same regions



a simple modification of EFT

• generalize to 2 particle species interacting only via gravity with
relative densities wb = Ωbaryon/Ωm, wc = ΩCDM/Ωm

δ̇c = −1
a
∂i((1 + δc)vc

i)

δ̇b = −1
a
∂i((1 + δb)vb

i)

∂iv̇
i
b +H∂iv

i
b+1

a
∂i(vjb∂jvib) + 1

a
∂2φ = −1

a
∂i (∂τρ)b

i + 1
a
∂i(γ)b

i

∂iv̇
i
c +H∂iv

i
c+1
a
∂i(vjc∂jvic) + 1

a
∂2φ = −1

a
∂i (∂τρ)c

i + 1
a
∂i(γ)c

i

∂2φ ∼ ωbδb + ωcδc effective stress tensor

momentum exchange part, only affects stochastic term



counter-terms

• at one loop, four possible parameters:

response to velocity gradients and star-formation physics

gravitationally induced speed of sound

∂i (∂τρ)ib − ∂i(γ)ib ∼ c2
b,g

(
wc∂

2δc + wb∂
2δb

)
+ c2

b,v ∂
2δb

∂i (∂τρ)ic − ∂i(γ)ic ∼ c2
c,g

(
wc∂

2δc + wb∂
2δb

)
+ c2

c,v ∂
2δc



perturbation theory

• basis of adiabatic (total matter) δA = wcδc + wbδb and
isocurvature modes: δI = δc − δb

• from linear equations, δ(1)
I ∼ const and δ(1)

A (k, a) ∼ D(a), linear
growth factor for total matter

• at z = 0, δI/δA ∼ 10−2 → isocurvature mode suppressed, can
neglect in loops

• because isocurvature loops neglected, counterterms needed for
only adiabatic diagrams, so only two cs parameters come in



isocurvature mode

Angulo, Hahn, Abel (2013)



resummation of bulk flows

• one fluid: large bulk flow does not affect equal time correlators
because of equivalence principle

• two fluids: argument still holds for adiabatic mode

• but - relative motion between baryons and DM gives dynamical
effect in all observables

• it is an IR effect, so we can resum it



bulk flows
sj(qi,t2)

sj(qi,t1)qi

• perturbation theory done in Eulerian space: fixed reference frame

• Lagrangian approach: track fluid flow using displacement ~s from
inital position ~q
Matsubara (2008)

• displacements affect matter density: δ(~k, t) =
∫
d3q exp[−i~k · (~q + ~s)]

• effects of large displacements break perturbation theory in
Eulerian theory, but are perturbative in Lagrangian theory



IR resummation: hybrid approach

• IR-resummed Eulerian correlator ξ(~r) at a given order in
perturbations is sum of ξ(~q) at lower orders weighted by
probability to be displaced from ~q to ~r

• from Lagrangian approach, P (~r|~q) ∼
∫
d3k e−i

~k·(~q−~r)e−(~k·∆~s1)2

• resums leading effect of long displacements on density, remaining
effect is perturbative

ξ|εN
δ

(~r, t1, t2) =
N∑
j=0

∫
d3q P |≤εN−j

δ
(~r|~q, t1, t2) ξ|εj

δ
,εjs

(~q)

• corresponds to perturbative corrections to Zeldovich
approximation



effect of relative velocity on BAO peak
• modify IR resummation to include baryons: large effect in
cross-correlation

• relative velocity effect large at z ∼ 40 and leads to a breaking of
perturbation theory

• EFT provides a consistent perturbative scheme, with higher order
corrections

Tseliakhovich and Hirata (2010)
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results



comparison to simulations

P c(k) = P c
11(k) + PA

1−loop(k)− 2(2π)
(
c̄2
A(a0) + wbc̄

2
I(a0)

)
k2PA

11(k)

Pb(k) = Pb
11(k) + PA

1−loop(k)− 2(2π)
(
c̄2
A(a0)− wcc̄

2
I(a0)

)
k2PA

11(k)

• c̄2
A = c2

no baryon + wb∆c̄2
A

• ∆c̄2
A: effect of baryons on total matter speed of sound, determine

by matching to PA/PA
dm only

• c̄2
I : effect of having 2 species, determine by matching to P b/PA



EFT results at one loop: determining ∆c̄2
A
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simulations used

Simulation wb∆c̄2
A

[
k−2

NL

]
c̄2
I

[
k−2

NL

]
Description

AGN 0.42± 0.13 −2.17± 0.24 Includes AGN (in addition to SN feedback)
DBLIMFV1618 0.24± 0.08 −1.25± 0.24 Top-heavy IMF at high pressure, extra SN

energy wind velocity
NOSN 0.063± 0.017 N/A No SN energy feedback
NOSN_NOZCOOL 0.059± 0.033 −0.72± 0.2 No SN energy feedback and cooling assumes

primordial abundances
NOZCOOL 0.10± 0.034 N/A Cooling assumes primordial abundances
WDENS 0.16± 0.025 −1.06± 0.24 Wind mass loading and velocity depend on

gas density (same SN energy as REF)
WML1V848 0.15± 0.025 −0.96± 0.24 Wind mass loading η = 1, velocity vw =

848 km/s (same SN energy as REF)
WML4 0.093± 0.034 −0.72± 0.24 Wind mass loading η = 4 (twice the SN

energy as REF)
REF 0.093± 0.034 −0.77± 0.29 Reference simulation



EFT results at one loop
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EFT results at one loop: determining c̄2
I
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EFT results at one loop: Pb
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effect of baryons

• c2
s parameters order one: baryon effects well approximated by
EFT

• effect of baryons captured in just one extra parameter, and a
simple functional form k2PA

11(k)

• very different baryon effects (difficult to simulate) correspond to
different sound speeds



concluding remarks

• LSS can potentially beat CMB constraints on primordial
parameters

• we must improve constraints by increasing kmax

• including baryons an important part of matching theory to
observations


